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Abstract

The Société Française des Sciences et Techniques Pharmaceutiques (SFSTP) published in 1997 a guide on the

validation of chromatographic bio-analytical methods, which introduces new concepts in three different areas: stages of

the validation, test of acceptability of a method and design of experiments to perform. In ‘stages of validation’, the

SFSTP guide requires two phases to validate a method. The first phase, called ‘prevalidation’, is intended to (1) identify

the model to use for the calibration curve; (2) evaluate the limits of quantitation; and (3) provide good estimates of the

precision and bias of the method before designing the ‘validation’ phase per se. In the ‘test of acceptability’, the use of

the interval hypotheses is envisaged by the SFSTP guide, not on the parameters of bias and precision, but on individual

results by mixing mean bias and intermediate precision in a single test. The SFSTP guide also avoids the use of

Satterthwaite’s df for testing the acceptability. The reasons for those choices are discussed extensively. In ‘design of

experiments’, much effort has been devoted to improving the quality of results by optimally designing and sizing the

experiments to perform in validation. The rationale for using near D-optimal designs for the calibration curve is

demonstrated and sample sizes are proposed to correctly size the validation experiments.
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1. Introduction

Before using an analytical method for quantita-

tive determinations of drugs and their metabolites,

an applicant laboratory must first demonstrate

that the envisaged method fulfils a number of

performance criteria. Since the publications of the

‘Washington Conference’ [1] and the ICH Guide-

lines on Validation of Analytical Methods Q2A

and Q2B [2,3], which list the performance criteria

to reach from a regulatory point of view, many

laboratories have started to redesign their pro-

cesses by involving analysts and statisticians, in

order to define strategies that will allow the

fulfilment of the regulatory requirements, while* Corresponding author.
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being practicable and scientifically consistent.

Some laboratories have probably been lucky in

finding an easy way to reach the goals, most have

certainly experienced, as we did, some frustrations

while trying to cope with contradictory, sometimes

scientifically irrelevant, requirements and defini-

tions. As an indication of this difficulty to define

reasonable practicable strategies to satisfy global

regulatory requirements, laboratory constraints

and scientific consistency, no guide has been

published that entirely addresses that issue. For

this reason, the ‘Société Française des Sciences et

Techniques Pharmaceutiques (SFSTP)’ created in

1995 a Commission involving analysts and statis-

ticians from the industry and the regulatory

agencies with the objective of publishing a guide

[4] that could be used by laboratories. The

proposed guide has been validated in several real

cases before being published and practical applica-

tions are now available [5,6] that provide the

analyst, on the one hand, with a better under-

standing on the way to proceed and on the other

hand, real data for qualifying his own computa-

tions that he could perform using a commercial

spreadsheet.
The SFSTP guide does not constitute a final end

point, but on the contrary, was envisaged as a

large basis to pave the way for developments that

are expected from readers and analysts that will

practice the guide. On one hand, since the pub-

lication of the guide in 1997, members of the

SFSTP Commission already have some modifica-

tions or warnings to propose in order to initiate a

continuous process of improvements. On the other

hand, many choices and decisions that have been

taken in this guide constitute disruptive progresses

compared to traditional ways to proceed in this

area. Those choices must be clearly justified and

understood because the guide is consistent as a

whole and cannot be applied part by part. Finally,

the SFSTP guide [4,7] does not cover all the topics

or performance criteria imposed by the ICH, such

as stability and robustness.

The objectives of the present article are precisely

to identify and explain the progress permitted by

the SFSTP guide, point out some of the limitations

and suggest ways to overcome them.

2. Stages of validation

As pointed out by Smith and Sittampalam [8],

the validation process involves four stages that are

called by the authors ‘Concept’, ‘Performance’,

‘Operational’ and possibly ‘Cross Validation’.

Behind the new words proposed, it is of initial

importance to understand that the validation is a

permanent process that starts from the very
beginning of the life of the method until its

retirement. In the Concept or development phase,

the analyst must identify and evaluate the impact

of potential sources of variability that could later

alter the global quality of the results. The objective

today in development is no more to find a method

that ‘works’, nor to elaborate smartly an analytical

method whose quality will have to be evaluated in
a later stage; the objective becomes to build results

of quality by means of an analytical method. In

other words, questions about the bias, precision

and robustness must conduct the actions of the

analyst developing a new method and no more

focus its efforts only on some performance criteria,

such as minimal resolution or maximal retention

(migration) time in the case of chromatographic or
electrophoretic methods. The ability of an analy-

tical method to provide individual determinations

of high quality, i.e. measurements close from the

true content of a sample, should be the very

endpoint every developer has to focus on.

The SFSTP guide unfortunately does not ex-

plicitly put a great emphasis on the development

phase and might give the impression that the
‘validation’ is only seen as a sequence of experi-

ments and calculations to perform to successfully

reach an endpoint that is the documentation step.

The SFSTP guide indirectly addresses the issue of

the development since, as clearly stated, prelimin-

ary knowledge or a priori on the performance of

the method must be available before properly

starting the characterisation stage. This formal
validation stage must be seen as a set of experi-

ments that will confirm the regulatory agencies

and the analyst himself that the method can indeed

be used for its intended purpose. The validation

phase can absolutely not be envisaged as a mean to

estimate the performance of the method. If noth-

ing or very little is known about the bias, the

B. Boulanger et al. / J. Pharm. Biomed. Anal. 32 (2003) 753�/765754



precision, the range or the limits of quantitation
before starting the validation itself, it is almost

impossible or too expensive to specify the experi-

ments to perform*/i.e. selecting the levels of

concentration, the number of runs, the number

of replicates per run, the extreme concentration

levels*/while being able to give reasonable chance

of success to end with a valid analytical method.

Such an approach is counter-productive and un-
acceptable in an industrial perspective. If a devel-

oper proceeds to the validation stage with a sample

size that is too small*/with respect to the un-

known performance, he takes the risk of increasing

significantly the costs for his laboratory either by

accepting as valid a truly non valid method (high

non-productive cost in routine) or rejecting a truly

valid method (non-productive cost in development
and potential delays in a project). For this reason,

the SFSTP guide warmly recommend to start with

a ‘Prevalidation’ phase whose objectives are pre-

cisely to (1) identify the model to use for the

calibration curve; (2) evaluate mainly the lower

limit of quantitation; and (3) provide good esti-

mates of the precision of the method for optimally

sizing the ‘validation’ phase per se. Discussions
could arise around the word ‘prevalidation’ that

could be understood by some analysts as steps to

perform but not to report necessarily. This ‘pre-

validation’ must however be viewed as a real

validation first phase and documented accord-

ingly. During the ‘prevalidation’, the model to be

used as calibration curve will be identified and the

quality of fit will be assessed only at this stage. The
experiments proposed are designed to consistently

evaluate the adequacy of the model. In the second

phase, called ‘validation’, the objective is to mimic

the routine practice that is envisaged. The model

will be used as is*/the parameters will of course be

estimated based on the new data*/and no more

investigation specific to the quality of fit will be

conducted, the same way it should be carried out
during routine. In this second step, the experi-

ments are designed to focus on the estimation of

the bias and precision of the method, not on the

calibration curve. If the model identified in the

‘prevalidation’ is not adequate, then the bias and

the precision in the ‘validation’ are impaired. The

same reasoning applies to the limits of quantita-

tion (LOQ); the range cannot be shortened after
the validation results without impairing the global

quality. For instance, the model identified in the

previous phase has been demonstrated as adequate

over the whole range and could induce bias if the

range of application is changed.

As already stated, the knowledge of the bias,

precision and limits of quantitation is mandatory

for initiating a formal validation phase, but the
proposed ‘prevalidation’ phase could be skipped if

consistent estimates of the performance criteria are

available to the analysts. That happens when

methods are developed following a well-structured

strategy, such as applying experimental design

approaches. Unfortunately, the ‘trial-and-error’

approach is still widely used for developing new

methods and so very little is known at the end of
such a development process. In this last case, the

‘validation’ becomes unfortunately the very first

opportunity to estimate the performance of the

method.

On the other side, the validation of the method

continues even after having successfully met all the

requirements and documented the results. The

SFSTP guide was precisely elaborated in that
prospective since it provides to the analyst a

controlled rate of failure during routine use. The

total cost of the validation experiments proposed

by the SFSTP guide could be perceived as more

expensive than other classical approaches, but

since a limited rate of failure is guaranteed at the

end of the validation, the cost of routine use of the

method can dramatically be reduced, which is
more important. Unfortunately, the SFSTP com-

mission does not make any recommendation for

assessing the validity of the method after the

‘validation’, such as re-evaluating periodically the

main performance criteria (bias, precision, calibra-

tion model, etc.) based on historical data obtained

with the standard samples and the quality control

samples. Besides the classical statistical process
control (SPS) techniques that allow to detect

rapidly and safely the occurrence of any problems,

re-estimating periodically the criteria on large sets

of data obtained in less controlled conditions*/as

opposed to well controlled conditions in

validation*/provides a less biased image of the

quality of the method at very little cost. Regula-
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tory documents, such as the ICH and the Wa-
shington Conference, impose the use of quality

control samples (QCS) and clearly specify the

limits of acceptance/rejection of each analytical

runs separately, i.e. the 4-6-20 rule [9] that stated

that at least four samples out of six should be

measured within the 9/20% acceptance limits and

if two samples are observed outside those limits,

they cannot occur at the same concentration level.
Based on the SPC principles, those controls, if

necessary, are not sufficient to guarantee the

quality of a method since a non-negligible number

of unacceptable runs still cannot be rejected and

acceptable runs rejected. It is a matter of respon-

sibility to continuously reassess the validity of a

method after the formal validation.

As demonstrated by Kringle and Khan-Malek
[10], the efficiency of the 4-6-20 rule largely

depends on the way the acceptance tests are

defined in the validation phase. As it will be seen

later (observed versus true, parameters versus

results) the SFSTP guide attempted to correctly

address this issue in order to control and reduce

the rate of false rejection and false acceptance if

the method truly continues to behave over time as
during the validation phase.

3. Observed versus true, parameters versus results

The interesting progress of the SFSTP guide is

to recommend the use of the interval hypotheses

approach already introduced by Hartman et al.

[11] and coming directly from the bioequivalence
paradigm [12] for assessing the acceptability of the

bias and the precision in the same test. The use of

the Interval Hypotheses tests was made possible

since the establishment of limits of acceptance by

the Washington Conference, i.e. the 80�/120%

limits at the LOQ and the 85�/115% limits else-

where for the bias and 20% (15%) for the precision.

In fact, the confused objective of the Washing-
ton Conference was to require that most, for

instance 95%, new measurements made by an

analytical method must fall within the 80�/120%

(or 85�/115%) limits as suggested later in the same

document by recommending the 4-6-20 rule. If the

objective stated by the Washington Conference is

correct and necessary, the way the requirements
were formulated (i.e. bias B/15% and precision B/

15%) for the validation was erroneous for two

main reasons.

First, if, from validation experiments, you end

up with a method whose observed bias*/an

average over several measurements*/is effectively

within the 80�/120% limit, let us say 119% and

whose observed intermediate precision R.S.D. is
B/20% acceptance limits, let us say 19%, then

strictly according to the Washington Conference

rule, this method can be accepted. However, in

routine use, :/50% of the measurements will fall

outside the acceptance limits and the 4-6-20 rule

will fortunately reject most of such runs and less

fortunately, also accept many suspect measure-

ments. There is definitively a contradiction, or at
least a confusion, between the requirements for

validation and those for routine use. This was

already pointed out by Hartmann et al. [12] and

Kringle and Khan-Malek [10]. As stated by those

authors [10], the main concern about the Wa-

shington Conference is: do the requirements of

maximum 20% (15%) apply on the observed

performance criteria (bias and precision) or on
the true performance criteria? The difference is

huge since in the first case the point estimate (e.g.

the average bias: m̂T) must fall within the accep-

tance limit, while in the second case that is the (e.g.

95%) confidence intervals (e.g. CI in Eq. (3))

around the point estimate that must fall within

the same acceptance limits. Reasonably, most will

agree today that the acceptance limits apply on the
true performance criteria as envisaged by Hart-

mann et al. [13]. To overcome this confusion, those

authors did propose the use of the interval

hypotheses approach whose general forms of the

null hypotheses and alternate hypotheses can be

written as follows:

H0: uT5dL or uT]dU

versus

Ha: dLB uTBdU (1)

where uT is the true parameter (i.e. true bias or

true precision) for the test samples and dL, dU the

lower and upper acceptance limits.
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When the parameter of interest is the relative
bias and the acceptance limits (�/15%, 15%), the

interval hypotheses in Eq. (1) becomes:

H0: (mT�m)=m5�15% or (mT�m)=m]15%

versus

Ha: �15%B(mT�m)=mB15% (2)

where mT is the true mean for the test sample and m

is the true nominal value introduced.

Following the interval hypotheses approach, an

analytical method will be accepted with respect to

the relative bias if both null hypotheses are
rejected in favour of the alternative hypotheses.

As demonstrated by Schuirmann [12], testing the

null hypothesis H0 at level 1�/a (let us say 95%) is

operationally equivalent to computing the 1�/2a

(i.e. the 90%) confidence intervals on the para-

meter of interest and accepts an analytical method

at 95% level if the two-sided 90% confidence

intervals are totally included within the acceptance
limits.

The use of interval hypotheses does solve

‘indirectly’ the usual low power problem, as stated

by Hartmann et al. [13]. Indeed, as can be seen in

Eq. (3), the larger the sample size (n) use in

validation, the smaller the confidence intervals

on the average bias parameters, since the SD of

the mean asymptotically converge to 0 when n

tends to the infinite:

CI � û9t(n�1;2a)

ŝffiffiffi
n

p (3)

where û is the estimated value of the parameter,

t(n�1;2a) is the value of the student distribution with

n�/1 df at the 2a level and ŝ the estimated SD of

the samples.

There are however logical concerns since with

sample size (n ) large enough, it is still possible to

pass the validation step successfully without con-

trolling correctly the rate of false rejection/accep-
tance in routine. Does the analytical method

become better because more experiments are

performed? Certainly not, only the variance of

the mean of several measurements improves.

As long as the true bias is within the acceptance

limits, let us say at 119%, making a method

acceptable cannot be reduced to a problem of

sample size that would provide confidence inter-
vals on the parameter totally included within the

acceptance limits. A similar reasoning could be

applied to the precision estimates (but in a one-

sided way instead of in a two one-sided way as for

bias since there is only a maximal acceptance limit

for the precision). Following that reasoning, with a

sample size large enough, it could be possible*/

but expensive*/to make a method accepted with a
bias of 119% and a precision of 19% at the LOQ.

But as previously noticed, in routine use, such a

method could give :/50% of the measurement

outside the acceptance limits and then be rejected

by applying the 4-6-20 rule. Such a result is

obviously not in line with the objectives the

Washington Conference wanted to achieve.

The second reason of this contradiction between
statistical achievements and objectives is to be

found in the wrong equivalence that has been

unconsciously established between individual re-

sults or measurements and validation criteria*/

bias and precision. Statistically speaking, it is

abusive and incorrect to state that a method

showing an acceptable bias and an acceptable

precision will provide acceptable measurements.
If a method provides acceptable individual results

then necessarily does this method have acceptable

validation criteria. But the reverse is not true: if an

analytical method shows acceptable criteria*/bias

and precision*/it does not necessarily imply that

the method will provide acceptable individual

results. This confusion and asymmetry in the

reasoning led participants of the Washington
Conference as well numerous authors after it to

focus exclusively on the evaluation of the valida-

tion criteria, while the interest had to be exclu-

sively on the future individual results. The

objective of an analytical method is to provide

acceptable measurements, i.e. to give measure-

ments for each unknown sample close from their

true value, not to have acceptable validation
criteria. The objective of the validation is to

provide users of the methods the guarantee*/or

probability*/that each measurement on unknown

samples is close enough from the true value. The

evaluation of this guarantee requires estimating

the parameters of bias and precision, but cannot

be limited to this simple evaluation.
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The most disruptive innovation of the SFSTP
guide is to apply the interval hypothesis approach

on the individual results and not on the parameters

as erroneously carried out for validation purpose.

It is then of first importance to basically under-

stand that a method must be able to give 95% (or

1�/a%) of any new results within the acceptance

limits before being considered as acceptable. For

this reason, the SFSTP guide does envisage the use
of the interval hypotheses test with the mean bias

(relative bias or percent recovery) parameter and

with the intermediate precision parameter estimate

for computing the confidence interval mixing in

one test both parameters. Expressed in terms of

percent recovery, the interval hypotheses on in-

dividual results can then be written as follow:

H0: mnew585%m or mnew]115%m

versus

Ha:85%mBmnewB115%m (4)

where m is the true nominal value of a sample and

mnew is any new results estimated with the method.

As indicated above, the method will be accepted if,

whatever the concentration level, the classical
shortest (1�/2a ) confidence intervals are included

within the acceptance limits. The SFSTP guide

proposes to compute by level of concentration the

confidence intervals as follows:

CIj � m̂j9t(0:1; v df)Sj(IP) (5)

where m̂j is the mean value of the results obtained

at the concentration level j , t(0.1, v df) is the value

of the student distribution with v df at the 10%
level and Sj (IP) is the estimate of the intermediate

precision SD calculated with an adequate nested

model for the corresponding concentration level.

The later request the use of a nested design as

proposed by the SFSTP guide that imposes to

have p independent runs and n replicates per run

for each level of concentration. The confidence

interval in Eq. (5) applies to the individual results
and provides a better guarantee*/but not perfect

since it is assumed that the bias is known*/the

future individual results will be acceptable. Note

that the bias and the precision are summed up in

Eq. (5). This sum is also referred to as the total

error. If one realises that the observed average m̂j is

in fact the true value m of the sample plus an
estimate of the average bias, then Eq. (5) implies

that the greater the bias, the better should be the

precision and vice-versa to make the method

accepted. Their sum cannot be greater than a

specific value depending on the risk (usually 5%)

the user is ready to take.

The problem, and possibly one limitation of the

SFSTP guide, is the number of df to use in Eq. (5).
The SFSTP guide, for the sake of simplicity,

suggest only the use of the within-run df : p (n�/

1). Since the intermediate precision variance is

equal to the sum of the two components (see Eq.

(6)), there exist no exact distribution for such an

estimate and therefore there exist no exact df [14].

S2
IP�S2

within-run�S2
between-run (6)

Several authors did propose ways to approx-

imate the distribution of such a sum of variance

components and the most widely used approxima-

tion is the one of Satterthwaite [15] who provides a

way to compute the df in this case. Satterthwaite’s

df in our special case of interest with p runs and n

replicates per run can be written as follows:

Sat DF�
p(p � 1)(n � 1 � F )2

(p � 1)(n � 1) � pF 2
(7)

where

F �
MSbetween-run

MSwithin-run

(8)

As can be seen from Eq. (7), for a selected design
of experiment (p runs, n replicates per run), the

Satterthwaite’s df will only depend on the ob-

served ratio F . Fig. 1 represents the values of

Satterthwaite’s df for different values of the F

ratio for a design of experiment with four runs and

four replicates per run. As can be seen from Fig. 1

and Eq. (7), the Satterthwaite’s df are close from

p+n�/1 (the df of the total error) when the F ratio
is close to 1 and then decreases continuously to

reach asymptotically p�/1 (the df of the between-

run term) when F goes to infinite.

The question now is to examine what is lost by

working with fixed p (n�/1) df, as suggested by

SFSTP compared to the use of Satterthwaite’s df,

according to the values of the F ratio one can
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expect to observe with chromatographic analytical

methods. If the values of F are small, then the

SFSTP approach is too liberal in the sense that it

rejects more frequently a valid method than by

using the Satterthwaite’s df. For large F ratios, the

SFSTP approach is however too conservative. But

is that difference important?

Everyone who works with chromatographic bio-

analytical methods, which is the purpose of the

SFSTP guide, already pointed out that both the

between-run and within-run variances are small

(sometimes the between-run variance estimate is

set to 0) around the lower LOQ and become larger

with the concentration level. Two examples are

based on real data obtained with two HPLC

analytical methods (range: 25�/1000 mg/ml) and

are represented in Fig. 2 where the variance

components have been modelled as functions of

the concentration level.

As can be seen in Fig. 2(a, b), the two variance

components effectively increase with the concen-

tration level but they can relatively increase at

different rates making the F ratio evolve in very

different ways with the concentration levels (see

Fig. 2c, d). Fig. 2(e, f) displays the corresponding

df from Satterthwaite and are compared to those

suggested by the SFSTP guide indicating a sig-
nificant difference when the between-run variance

component grow faster than the within-run var-

iance component with the concentration. The

difference between the two approaches is less

important when both variances increase at com-

parable rates with the concentration. Whatever the

difference observed with respect to the df, the most

important impact has to be seen on the accuracy
profile or on the function of the upper limit of

confidence interval computed with Eq. (5) and

assuming no bias. Fig. 2(g, h) displays this upper

limit expressed in percentage of the concentration.

As can be seen, the difference between both

approaches is minimal and suggest that when

between-run variance component increases faster

than the within-run one, the lower LOQ is slightly
overestimated using the SFSTP recommendation.

Above the lower LOQ, the way to compute the df

is without impact for accepting or not an analy-

tical method. Stated differently the equation used

for calculating the df only affect the estimate of the

lower LOQ of a chromatographic analytical

method, the Satterthwaite’s method being pre-

ferred. As suggested by Fig. 2(c, d), in general
the between-run variance at the lower LOQ is very

small compared to the within-run variance and is

frequently equal to 0. In fact, as demonstrated by

Searle et al. [14], the probability of having negative

estimates for the between-run variance increase

dramatically once the ratio of the true between-run

variance over the true within-run variance is

smaller than 1 and becomes important when the
ratio is smaller than 0.25. Having such small ratios

is usually the rule at the lower LOQ. Then, at the

LOQ, the most important components and prob-

ably the only component, is the within-run var-

iance. For those practical reasons and for the sake

of simplicity, the SFSTP guide recommends the

use of the within-run variance df p(n�/1).

4. Design of experiments

Another major*/but less apparent*/progress

of the SFSTP guide is the large part devoted to the

design of experiments and the underlying use of

theory of optimal design [16]. Except for few

Fig. 1. Number of Satterthwaite’s df as a function of the ratio

F�/MS between-run/MS within-run for a four run�/four

replicate nested designs. Horizontal line at 12 represents SFSTP

recommendation for df for such a design. The dashed hor-

izontal line at 3 represents the asymptotic value for Satterthwai-

te’s df*/in fact the p�/1 df of the between-run variance*/when

ratio F goes to infinity.
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Fig. 2. Classical estimated values obtained with chromatographic bio-analytical methods of the between-run variance (a,b: dashed

line) and the within-run variance (a,b: solid line) as a function of the concentration level. In (c, d) the corresponding F ratio as a

function of the concentration levels. In (e, f) the df with Satterthwaite’s approximation (dashed line) or according to the SFSTP guide

(solid line). In (g, h) the precision profiles (expressed in CV) obtained using Satterthwaite’s approximation for df (dashed line) or

SFSTP df (solid line).
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papers [17], very little is said in the literature about
the dramatic gains in quality and cost that could

be obtained by optimally designing experiments.

Most analysts continue to think of experimental

design in terms of sample size. This remains of

course an important issue, but arises only after

that the optimality of the design has been investi-

gated, for example, selection of optimal concen-

tration levels. In the opposite direction, minimal
methodological recommendations made by the

ICH in Q2B [2] or by the European Note EEC

III/844/87 [18] regarding the experiments to per-

form are sub-optimal and so contradictory with

their overall objective of quality measurements.

4.1. Design for the calibration curve

One simple topic where quality*/bias and
precision*/of the results can be improved without

additional cost is certainly the selection of the

optimal concentration levels to be used for fitting

the calibration curve. To figure out the impact of

the selection of concentration levels on the preci-

sion, let us start with a basic theoretical example.

Let us assume that the purpose is to daily calibrate

a method that is truly linear in the original scale
(e.g. from 10 to 1000 mg/ml) and that there are data

enough to convince the analysts that this is

effectively the case. The variance of the response

using this method is homogenous across the whole

range and the %R.S.D. at the 10-mg/ml concentra-

tion level*/the assumed LOQ*/is :/7%. The bias

of the method is assumed to be perfect across the

range.
A first design that could be envisaged for

establishing the calibration curve of such a method

is the one recommended by the ICH [2] and the

EEC Note [18] with at least five concentrations

levels, for example six levels more or less equally

spaced without repetition and covering the whole

range (Design 1�/

{10, 200, 400, 600, 800, 1000}). Another design,
also with six samples, consists of three different

concentration levels*/at the two extremes of the

range and at the mid range*/with duplicates

(Design 2�/{10, 10, 500, 500, 1000, 1000}).

The third design, still with six samples, only has

two different concentrations at the extremes but

measured in triplicates (Design 3�/

{10, 10, 10, 1000, 1000, 1000}). Fig. 3 repre-

sents around the lower LOQ an approximation

of the upper and lower confidence intervals [19] of

the concentrations predicted using the calibration

curve obtained with the three designs.

The two outside curves represent the upper and

lower confidence intervals obtained with Design 1,

while the two internal curves have been obtained

with Design 3. Between those two extremes are the

upper and lower limits when Design 2 is used for

the calibration curve. As can be seen, the precision

of the results is better with Design 3 than with

Design 1, especially around the lower LOQ that is

of first importance when supporting a pharmaco-

kinetic study. Above 100 mg/ml, the difference in

precision between the three designs is irrelevant.

Moreover, if as suggested by the Washington

Conference, the LOQ is the lowest concentration

where 95% of the results fall within the (80�/120%)

limits, then the LOQ obtained when calibrating

with Design 1 is 12 mg/ml instead of 10 mg/ml for

Design 3, i.e. an improvement of 20% in this

simple example. Stated differently, the selection of

the concentration levels has an impact on the

precision and the LOQ of the method and the gain

is obtained here without additional cost.

In a statistical perspective, such a result is not a

surprise since, in general, the smaller the variance

of the estimated parameters*/the slope and the

Fig. 3. The upper and lower 95% confidence intervals on a new

prediction using linear calibration lines obtained with three

different designs as a function of the concentration. Confidence

intervals are expressed in the percent recovery scale.

B. Boulanger et al. / J. Pharm. Biomed. Anal. 32 (2003) 753�/765 761



intercept in the case of the simple linear model*/

the better the precision of the inverse prediction if

everything else remains equal, i.e. the analytical

error, the mean value of the parameters and the

number of samples. As can be seen in Eq. (9), the

approximation of the variance of a new inverse

prediction is a function of the analytical error ŝ2;
the number of calibration samples (n), the distance

between this new prediction and the mean of
concentration values of calibration samples

(X̂ new�X̄ 2); the estimated slope b̂ and the esti-

mated variance of the slope Varfb̂g:

VarfX̂ newg

�
1

b̂2

�
ŝ2�

ŝ2

n
�(X̂ new�X̄ )2Varfb̂g

�
(9)

Since the analytical error ŝ2 and the slope b̂ are

two parts that cannot be modified in validation,

the sample size n and the variance of the slope
Varfb̂g are the two remaining elements on which it

is still possible to act to improve the precision of

measurements. For a fixed sample size (n�/6) as

envisaged in the above example, it can be seen in

Eq. (9) that significant improvements can be

obtained by decreasing the estimated variance of

the slope. As shown by Atkinson and Donev [16],

the design that minimises the overall variance of
the parameters is the D-optimal design. The D-

optimal design is trivial to find in the case of the

simple linear model since, as indicated in Eq. (10),

it is obtained when the distance between the

concentration values is maximal over the range

envisaged. This is the case for n�/6 with Design 3.

Varfb̂g� ŝ2

Xn

i�1

(Xi � X̄ )2

(10)

A contrario, the design suggested by the ICH and

the EEC note is sub-optimal with respect to the

precision of the results. However, the intended
objective for proposing such a design was to force

the analyst to demonstrate that the relationship

between the concentration and the response is

effectively linear. Indeed, the design proposed

above is D-optimal if, as indicated, the relation-

ship is known as being truly linear. If it is not the

case, for example if the relationship can be

modelled using a quadratic polynomial, then the

D-optimal design becomes the Design 2 for n�/6.

Intuitively, this design makes sense since it is at the

middle of the range that the difference between the

linear and the quadratic model is the greatest.

The problem in finding the optimal design that

will maximise the accuracy of the results is first, to

identify what is the most ‘likely model’ that could

be used as calibration curve, second, to identify the

most ‘likely departure’ to the previous model that

could occur in routine use and third, to find a

‘robust optimal’ design related to this model and

that could detect any departure to the main model

while maximising the precision. A fourth problem

that is added is the necessity to also find the

‘lowest LOQ’ that is impacted by the preliminary

design used for identifying the model. Finally, be

aware that for most bio-analytical methods with

large range, the variance of the response will

probably not be homogeneous across the range

and weighted estimation strategies will have to be

envisaged.

The SFSTP guide proposes an iterative strategy

for solving those four problems during the pre-

validation phase that could be summarised in the

form of a ‘rule-of-thumb’:

1) Make some guesses on what could happen and

identify the families of models that could be

possible, such as linear model, log-linear

model or quadratic polynomial model, for

example. Not every model is likely depending

on the method used and in the case of

chromatographic methods, sigmoid models

are, for example, not expected.

2) Make some guesses about the possible range

for the method and the LOQ.

3) Select a design that is optimal with respect to

the most complicated model envisaged in 1

and covering the range defined in 2.

4) To the optimal design selected in 3, add

concentration levels below and above the a

priori LOQ anticipated in 2 in order to locally

figure out how the precision behaves. Those

concentration levels close to the LOQ will act

as a big point at the lowest (highest) extreme
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of the range without impairing the overall
optimality of the design.

5) Repeat at least three times each measurement

and repeat this process over a minimum of

three independent runs (or series), i.e. adjust

sample size only after having identified an

optimal design.

6) Find the best model within the family envi-

saged in 1 that fit the data while keeping all
the concentration levels at this step.

7) Estimate the precision of the results using this

model and eventually eliminate the lowest

concentration level if the precision obtained

at that level is too low.

8) Continue in 6 with the remaining concentra-

tion levels until that precision is acceptable

across the updated range (7).
9) Consider the model found as the true model

and do not re-evaluate its functional form in

the validation phase.

This process suggested in the SFSTP guide, that

could appear quite cumbersome, constitutes a

good compromise between statistics and cost-

effectiveness and provides results close to the ideal

solution.

4.2. Design for estimating the variance components

Another type of design that is critical in the

validation of analytical methods is the one used for

estimating the different variance components, i.e.

the within-run variance (repeatability variance)

and the between-run variance and potentially the
inter-laboratory variance; the intermediate preci-

sion variance being equal to the sum of the

repeatability variance and the between-run var-

iance (see Eq. (2)), the reproducibility variance

being equal to the intermediate precision variance

plus the inter-laboratory variance. Until Kringle

and Khan-Malek [10] very little has been proposed

in the literature that are in accordance with the
new recommendations from the Washington Con-

ference and the ICH. At least in the ICH it is

indicated that ‘the use of an experimental design

(matrix) is encouraged’. From a statistical stand

point, the use of a correctly sized experimental

design is mandatory if the objective is to reduce the

consumer risk as well as the producer risk. The
SFSTP guide precisely does propose estimating the

intermediate precision a way to optimally size a

design for the validation phase that is reasonable,

cost-effective while statistically meaningful and

depending on the expected precision and bias of

the method. The guide does not cover the estima-

tion of the ‘reproducibility’ variance. The expected

precision and bias are directly available at the end
of the prevalidation phase, confirming, by the way,

the important role that this preliminary phase

plays in adequately powering the validation phase.

The proposed minimal number of runs and

replicates to perform within each run are reported

in Table 1. They have been obtained by simulation

assuming a maximal relative bias of 2% and using

the interval hypotheses approach described earlier.
Note that the proposed sample sizes indicated in

Table 1 are sample sizes by level of concentration

and apply only to the quality control samples

(QCS) that must be prepared independently of the

calibration samples. At least three concentration

levels are requested for the QCS and the inter-

mediate precision has to be estimated by concen-

tration level. Ideally, the levels to be selected must
be at the two extremes of the range (0 and 100%)

and around the mid-range (50%). The SFSTP

guide proposes four levels: at the lowest LOQ,

three times the LOQ, mid-range (50%) and at 80%

of the range. The choice of 80 instead of 100% is a

matter of documentation and cannot be statisti-

cally justified. The argument for having QCS at

80% is that, according to regulatory documents,
no extrapolation is allowed outside the range.

Having QCS at 100% will of course provide :/

50% of the measurements above the maximal

determination limit and this could be seen as an

extrapolation. The argument arises probably from

a wrong interpretation of the regulatory docu-

ments. Extrapolation has to be avoided for

unknown samples, but remain acceptable and
even recommended, when it applies to a sample

whose nominal value is known and within the

range. With QCS at 80% of the range, it is

impossible to guarantee that at a concentration

close to the upper end of the range, the precision

and bias are still acceptable. Recommending QCS

at 100% of the range during the validation phase
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and during the routine use is certainly an improve-

ment to the original SFSTP guide.

The rationale for having QCS at three times the

LOQ is different: most analysts do suspect that,

using the 4-6-20 rule, the rate of rejection in

routine use will be too high at the LOQ and

having QCS located slightly above the LOQ is

perceived as a ‘back-up’ that will allow the

restriction of the range occasionally in routine

without loosing measurements falling above this

limit. As seen earlier, the LOQ is defined as the

lowest concentration where 95% of the future

measurements will fall within the acceptance limits

(80�/120%). If correctly estimated, only :/5% of

the QCS will fall outside the acceptance and this

‘back-up’ level is certainly of little use.
The SFSTP guide also strongly recommends

that the different runs must be performed in

conditions as different as possible and reflecting

the way the method will potentially be used in

routine. It is indicated that, if envisaged, different

apparatus, operators or any other environmental

source of variations must cover from run to run. It

is a matter of protecting the analyst himself against

a too high rate of rejection of runs in routine.

Validating the method in very uniform conditions

will increase the chance to pass successfully the

documentation or characterisation step, but rou-
tinely the cost of use of the method could increase

in an uncontrolled manner. This is certainly not

the objective for an analyst developing and vali-

dating a method.
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